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Chapter 1: Linear Algebra 

1.1 Introduction to Vector and Matrix Notation 
 
Much of the mathematical reasoning in all of the sciences that pertain to humans is linear in nature, and 
linear equations can be greatly condensed by matrix notation and matrix algebra.  In fact, were it not for 
matrix notation, some equations could fill entire pages and defy our understanding.  The first step in 
creating easier-to-grasp linear equations is to define the vector.  A vector is defined as an ordered set of 
numbers.  Vectors are classified as either row vectors or column vectors.  Note that a vector with one 
element is called a scalar.  Here are two examples.  The vector a is a column vector with m elements,  
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and the vector b is a row vector with q elements: 
 
 ]bbb[ q21 L=b . 
 
You should notice that in this text vectors are generally represented with lower case letters in bold.   
 
There are a variety of ways that we can operate on vectors, but one of the simplest is the transpose 
operator, which, when applied to a vector, turns a row into a column and vice versa.  For example,  
 
 ].aaa[ m21 L=′a  
 
By convention, in this book, a vector with a transpose will generally imply that we are dealing with a row.  
The implication is that by default, all vectors are columns.   
 
A matrix is defined as a collection of vectors, for example  
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In this text, matrices are typically represented with an upper case bold letter.   
 
The square brackets are used to list all of the elements of a matrix while the curly brackets are sometimes 
used to show a typical element of the matrix and thereby symbolize the entire matrix in that manner.  Note 
that the first subscript of X indexes the row, while the second indexes columns.  Matrices are characterized 
by their order, that is to say, the number of rows and columns that they have.   The above matrix X is of 
order n by m, sometimes written n · m.  From time to time we may see a matrix like X written with its order 
like so: nXm.  It is semantically appropriate to say that a row vector is a matrix of but one row, and a column 
vector is a matrix of one column.  Of course, a scalar can be thought of as the special case when we have a 
1 by 1 matrix.   
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At times it will prove useful to keep track of the individual vectors that comprise a matrix.  Suppose, for 
example that we defined each of the rows of X as 
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and then defined each column of X: 
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so that X could be represented as  
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In this context, the dot is known as a subscript reduction operator since it allows us to aggregate over the 
subscript replaced by the dot.  So for example, the dot in ⋅′ix  summarizes all of the columns in the ith row of 
X.   
 
Every so often a matrix will have exactly as many rows as columns, in which case it is a square matrix.  
Many matrices of importance in statistics are in fact square.   

1.2 The First Steps Towards an Algebra for Matrices 
 
One of  the first steps we need to make to create an algebra for matrices is to define equality.  We now do 
so defining two matrices 
 
 A = B iff aij = bij for all i, j. (1.3) 
 
Every element of A and B needs to be identical.  For this to be possible, obviously both A and B must have 
the same order!   
 
Just as one can transpose a vector, a matrix can be transposed as well.  Matrix transposition takes all rows 
into columns and vice versa.  For example,  
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Bringing our old friend X back, we could say that   
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We might add that  
 
 ( ) XX =′′ . (1.4) 
 
A square matrix S is called symmetric if 
 
 SS ′= . (1.5) 
 
Of course, a scalar, being a 1 by 1 matrix, is always symmetric.   
 
Now we are ready to define matrix addition.  For two matrices A and B of the same order, their sum is 
defined as the addition of each corresponding element as in  
 

 
.ba}c{ ijijij +=

+= BAC
 (1.6) 

 
That is to say, we take each element of A and B and add them to produce the corresponding element of the 
sum.  Here it must be emphasized that matrix addition is only possible if the components are conformable 
for addition.  In order to be conformable for addition, they must have the same number of rows and 
columns.   
 
It is possible to multiply a scalar times a matrix.  This is called, appropriately enough, scalar multiplication.  
If c is a scalar, we could have 
 
 cA = B. 
 
For example we might have  
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Assuming that c1 and c2 are scalars, we can outline some properties of scalar multiplication:  
 
Associative: c1(c2 A) = (c1c2) A  (1.7) 
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Distributive: (c1 + c2) A = c1 A + c2 A (1.8) 
 
Now that we have defined matrix addition and scalar multiplication, we can define matrix subtraction as  
 
 BABA )1(−+=− . 
 
There are a few special matrices that will be of use later that have particular names.  For example, an n by 
m matrix filled with zeroes is called a null matrix, 
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and an n · m matrix of ones is called a unit matrix:  
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We have already seen that a matrix that is equal to its transpose ( SS ′= ) is referred to as symmetric.  A 
diagonal matrix, such as D, is a special case of a symmetric matrix such that 
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i. e. the matrix consists of zeroes in all of the off-diagonal positions.  In contrast, the diagonal positions 
hold elements for which the subscripts are identical. 
 
A special case of a diagonal matrix is called a scalar matrix, a typical example of which appears below:  
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And finally, a special type of scalar matrix is called the identity matrix.  As we will soon see, the identity 
matrix serves as the identity element of matrix multiplication.  For now, note that we generally use the 
symbol I to refer to such a matrix: 
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Having defined the identity matrix, we can think of a scalar matrix as being expressible as cI where c is a 
scalar.  
 
We can now define some properties of matrix addition.   
 
Commutative: A + B = B + A  (1.13) 
 
Associative: A + (B + C) = (A + B) + C (1.14) 
 
Identity: A + 0 = A  (1.15) 
 
Note that in the definitions above we have assumed that all matrices are conformable for addition.   
 
At this point we are ever closer to having all of the tools we need to create an algebra with vectors and 
matrices.  We are only missing a way to multiply vectors and matrices.   We now turn to that task.  Assume 
we have a 1 by m row vector, a', and an m by 1 column vector, b.  In that case, we can have  
 

 

[ ]

.ba

bababa

b

b
b

aaa

m

1i
ii

mm2211

m

2

1

m21

∑
=

=

+++=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=′

L

L
Lba

 (1.16) 

 
This operation is called taking a linear combination, but it is also known as the scalar product, the inner 
product, and the dot product.  This is an extremely useful operation and a way to express a linear function 
with a very dense notation.  For example, to sum the elements of a vector, we need only write 
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When a linear combination of two non-null vectors equals zero, we say that they are orthogonal as x′ and y 
below:  
 
 0=′yx .   (1.17) 
 
Geometrically, this is equivalent to saying that they are at right angles in a space with as many axes as there 
are elements in the vector.   Assume for example that we have a 2 element vector.  This can be interpreted 
as a point, or a vector with a terminus, in a plane (a two space).  Consider the graph below: 
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Note that the vector [ ]12=′x  is represented in the graph.  Can you picture an orthogonal vector?  The 

length of a vector is given by ∑=′ 2
ixxx .   

 

1.3 Matrix Multiplication 
 
The main difference between scalar and matrix multiplication, a difference that can really throw off 
students, is that the commutative property does not apply in matrix multiplication.  In general, AB ≠  BA, 
but what’s more, BA may not even be possible.  We shall see why in a second.  For now, note that in the 
product AB, where A is m · n and B is n · p, we would call A the premultiplying matrix and B the 
postmultiplying matrix. Each row of A is combined with each column of B in vector multiplication.  An 
element of the product matrix, cij, is produced from the ith row of A and the jth column of B.  In other 
words,  
 

 ∑=′= ⋅⋅

n

k
kjikjiij bac ba  (1.18) 

 
The first thing we should note here is that the row vectors of A must be of the same order as the column 
vectors of B, in our case of order n.  If not, A and B would not be conformable for multiplication. We could 
diagram things like this:  
 

   
 
 Here the new matrix C takes on the number of rows of A and the number of columns of B.  The number of 
columns of A must match the number of rows of B.  OK, now let’s look at a quick example.  Say  
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A particular triple product, with a premultiplying row vector, a square matrix, and a postmultiplying 
column vector, is known as a bilinear form: 
 
 1mmmm111 dBac ′=  (1.19) 
 
A very important special case of the bilinear form is the quadratic form, in which the vectors a and d above 
are the same: 
 
 1mmmm111 aBac ′=  (1.20) 
 
 
The quadratic form is widely used because it represents the variance of a linear transformation.    
 
For completion, we now present a vector outer product, in which an m by 1 vector, say a, is postmultiplied 
by a row vector, b′ : 
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The matrix C has m · n elements, but yet it was created from only m + n elements.  Obviously, some 
elements in C must be redundant in some way.  It is possible to have a matrix outer product as well - for 
example a 4 by 2 multiplied by a 2 by 4 would also be considered an outer product.   

1.4  Partitioned Matrices 
 
It is sometimes desirable to keep track of parts of matrices other than either individual rows or columns as 
we did with the dot subscript reduction operator.  For example, lets say that the matrix A, which is m by p 
consists of two partitions, A1 which is m by p1 and A2 which is m by p2, where p1 + p2 = p.  Thus both A1 

and A2 have the same number of rows and when stacked horizontally, as they will be below, their columns 
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will add up to the number of columns of A.  Then lets say we have the matrix B, which is of the order p by 
r, has two partitions B1 and B2 with B1 being p1 by r and B2 being p2 by r.  The partitions B1 and B2 both 
have the same number of columns, namely r, so that when they are stacked vertically they match perfectly 
and their rows add up to the number of rows in B.  In that case,  
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We note that the product A1B1 and the product A2B2 are both conformable with order of m by r, precisely 
the order of AB.   
 

1.5 Cross-Product Matrices 
 
The cross product matrix is one of the most useful and common matrices in statistics.  Assume we have a 
sample of n cases and that we have m variables.  We define xij as the observation on consumer i (or store i 
or competitor i or segment i, etc.) with variable or measurement j.   We can say that ⋅′ix is a 1 · m row vector 
that contains all of the measurements on case i and that j⋅x  is the n · 1 column vector containing all cases’ 
measurements on variable j.   The matrix X can then be expressed as a partitioned matrix, either as a series 
of row vectors, one per case, or as a series of columns, one per variable: 
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What happens when we transpose X?  All the rows become columns and all the columns become rows, as 
we can see below: 
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In the right piece, a typical row would be j⋅′x which holds the data on variable j, but now in row format.  
This row has n columns.  In the left piece, ⋅ix is an m by 1 column holding all of the variables for case i.   
Now we have two possible ways to express the cross product, XX′ .  In the first approach, we show the 
columns of X which are now the rows of X': 
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The above method of describing XX′ shows each element of the m by m matrix being created, one at a 
time.  Each element of X'X is comprised of an inner product created by multiplying two n element vectors 
together.  But now lets keep track of the rows of X, which are columns of X' which is just the opposite of 
what we did above.  In this case, we have  
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and the m · m outer products, ⋅⋅ ′ii xx , are summed across all n cases to build up the cross product matrix, B. 
 

1.6 Properties of Matrix Multiplication 
 
In what follows, c is a scalar, and A, B, C, D, E are matrices.  Note that we are assuming in all instances 
below that the matrices are conformable for multiplication.   
 
Commutative:  cA = Ac (1.28)  
 
Associative:   A(cB) = (cA)B = c(AB) (1.29) 
 
Looking at the above associative property for scalar multiplication, we can say that a scalar can pass 
through a matrix or a parenthesis.   
 
Associative:  (AB)C = A(BC)  (1.30)  
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Right Distributive:    A[B + C] = AB + AC (1.31) 
 
Left Distributive:  [B + C]A = BA + CA (1.32) 
 
It is important to note here that unlike scalar algebra, we must distinguish between the left and right 
distributive properties.  Again, note that these properties only hold when the symbols represent matrices 
that are conformable to the operations used in the equation.   
 
From Equation (1.31) and (1.32) we can deduce the following 
 
  (A + B)′(A + B) = A′A + A′B + B′A + B′B . (1.33) 
 
To multiply out an equation like Equation (1.33), students sometimes remember the mnemonic FOIL = 
first, outside, inside, last, which gives the sequence of terms to be multiplied.   
 
Transpose of a Product:   [AB]' = B'A' (1.34) 
 
In words, the above theorem states that the transpose of a product is the product of the transposes in reverse 
order.  And finally, the identity element of matrix multiplication is the previously defined matrix I:  
 
Identity:  IA = AI = A (1.35) 
 

1.7 The Trace of a Square Matrix 
 
With a square matrix, from time to time we will have occasion to add up the diagonal elements, a sum 
known as the trace of a matrix.  For example for the p by p matrix S, the trace of S is defined as  
 
 ∑=

i
iisTr S . (1.36) 

 
A scalar is equal to its own trace.  We can also say that with conformable matrices A and B, such that AB 
and BA both exist, it can be shown that the  
 
 Tr[AB] = Tr[BA] . (1.37) 
 
The theorem is applicable if both A and B are square, or if A is m · n and B is n · m.   
 

1.8 The Determinant of a Matrix 
 
While a square matrix of order m contains m2 elements, one way to summarize all these numbers with one 
quantity is the determinant.  The determinant has a key role in solving systems of linear equations.  
Consider the following two equations in two unknowns, x1 and x2.   
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In a little while we will solve for the unknowns in the vector x using matrix notation.  But for now, sticking 
with scalars, we can solve this using the following formula for x1: 
 

 
21122211

122221
1 aaaa

ayayx
−
−

=  (1.38) 

 
The denominator of this formula is the determinant of the 2 by 2 matrix A.  The determinant of a square 
matrix like A is usually written |A|.   Being in the denominator, the system cannot be solved when the 
determinant is zero.  Whether the determinant is zero depends on how much information is in A.  If rows or 
columns are redundant, then |A| = 0 and there is no unique solution to the system of equations.   
 
The determinant of a scalar is simply that scalar.  Rules for determining the determinant of 3 by 3 and 
larger matrices can be found in Bock (1975, p. 62), Johnson and Wichern (2002, pp. 94-5) and other books 
on the linear model.   

1.9 The Inverse of a Matrix 
 
In scalar algebra we implicitly take the inverse to solve multiplication problems.  If our system above was 
one equation in one unknown, it would be 
 
 ax = y 
 
 a-1ax =  a-1y 
 
 1x = a-1y 
 
 x = a-1y 
 
With a system of equations, the analog of a

-1
 = 1/a is the inverse of a matrix, A-1. 

 
 Ax = y 
 
 A-1Ax = A-1y 
 
 Ix = A-1y 
 
To solve the system, you must find a matrix A-1 such that A-1A = I.  You can only do so when |A| ≠  0.  In 
fact, we have now just officially defined the inverse of a matrix.  The inverse of a square matrix A is simply 
that matrix, which when pre- or post-multiplied by A, yields the identity matrix, i. e. AA-1 =A-1A = I.  One 
property of inverses is that the inverse of a product is equal to the product of the inverses in reverse order: 
 
Inverse of a Product: (AB)

-1
 = B

-1
A

-1 (1.39) 
 
For proof, consider that 
 
 
 B

-1
A

-1
AB = B

-1
(A

-1
A)B 

 
 = B

-1
IB 

 
 = I 
 
The inverse of the transpose of a square matrix is equal to the transpose of the inverse of that matrix.  In 
other words, if A

-1
 is the inverse of A, then  



Linear Algebra  13  

 
 A

-1
′A′ = I . (1.40)  

 

1.10 Kronecker Product 
 
The Kronecker Product with operator ⊗, is defined as    
 
 }a{ ijqpnmnqmp BBAC =⊗= . (1.41) 
 
For example,  
 

 

.
a
a

baba
baba
baba
baba

bb
bb

a
a

21

11

22212121

12211121

22112111

12111111

2221

1211

21

11

⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=⎥
⎦

⎤
⎢
⎣

⎡
⊗⎥

⎦

⎤
⎢
⎣

⎡

B
B

 

 

References 
 
R. Darrell Bock (1975) Multivariate Statistical Methods in Behavioral Research.  New York: McGraw-
Hill.   
 
Green, Paul E. (1976) Mathematical Tools for Applied Multivariate Analysis. New York: Academic 
 
Johnson, Richard A. and Dean W. Wichern (2002) Applied Multivariate Statistical Analysis, Fifth Edition.  
Upper Saddle River, NJ: Prentice-Hall. 


	MM_letter.pdf

